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1. Introduction
We recall the following: Let G be a nonempty subset of a Banach space X and

Φ: G → G a self-mapping. A point x ∈ X is said to be a fixed point of Φ if Φx = x.
Many researchers attracted in the direction of approximating the fixed points

of nonexpansive mapping and its generalized form [3, 4, 9, 12, 14, 15, 18, 20, 21,
29] in a hyperbolic space.



288 South East Asian J. of Mathematics and Mathematical Sciences

Remember that a selfmap Φ on a subset G of a Banach space X is called
nonexpansive if

||Φx− Φy|| ≤ ||x− y|| ∀x, y ∈ G. (1.1)

Suzuki [30] made a significant breakthrough in 2008 by introducing a weak
notion of nonexpansive operators. It is worth noting that a selfmap Φ of a metric
space subset G is said to satisfy Condition (C) (also known as Suzuki map) if for
any x, y ∈ G, we have

1

2
||x− Φx|| ≤ ||x− y|| =⇒ ||Φx− Φy|| ≤ ||x− y||. (1.2)

Remark 1.1. It is clear that every nonexpansive map is Suzuki nonexpansive.
However, an example in [30] shows that there exists maps which are Suzuki nonex-
pansive but not nonexpansive.

In 2011, Aoyama and Kohsaka [5] proposed the class of α-nonexpansive maps
as follows:

A selfmap Φ on a subset G of a Banach space is said to satisfy α-nonexpansive
maps if one can find a real number α ∈ [0, 1) for any x, y ∈ G, we have

||Φx− Φy||2 ≤ α||x− Φy||2 + α||y − Φx||2 + (1− 2α)||x− y||2. (1.3)

In 2017, Pant and Shukla [28] proposed the class of α-nonexpansive maps as
follows:

A selfmap Φ on a subset G of a Banach space is said to satisfy generalized
α-nonexpansive maps if one can find a real number α ∈ [0, 1) for any x, y ∈ G, we
have

1

2
||x− Φx|| ≤ ||x− y|| =⇒ ||Φx− Φy|| ≤ α||y − Φx||+ α||x− Φy||

+ (1− 2α)||x− y||.
(1.4)

Remark 1.2. It is clear that every Suzuki nonexpansive map is generalized 0-
nonexpansive. However, an example in [28] shows that there exist maps which are
generalized α-nonexpansive but not Suzuki nonexpansive.

In 2019, Pant and Pandey [27] proposed the class of Reich–Suzuki type nonex-
pansive maps as follows:

A selfmap Φ on a subset G of a Banach space is said to satisfy β-Reich-Suzuki
type nonexpansive maps if one can find a real number β ∈ [0, 1) for any x, y ∈ G,
we have

1

2
||x− Φx|| ≤ ||x− y|| =⇒ ||Φx− Φy|| ≤ β||x− Φx||+ β||y − Φy||

+ (1− 2β)||x− y||.
(1.5)
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Remark 1.3. It is clear that every Suzuki nonexpansive map is 0-Reich–Suzuki
type nonexpansive. However, an example in [27] shows that there exists maps which
are β-Reich–Suzuki type nonexpansive but not Suzuki nonexpansive.

Definition 1.4. [33] A selfmap Φ on a subset G of a Banach space is said to be
generalized (α, β)-nonexpansive, if there exists real number α, β ∈ R+ satisfying
α + β < 1 such that, for all x, y ∈ G

1

2
||x− Φx|| ≤ ||x− y|| =⇒ ||Φx− Φy|| ≤ α||x− Φy||+ α||y − Φx||+ β||x− Φx||

+ β||y − Φy||+ (1− 2α− 2β)||x− y||. (1.6)

The following proposition gives many examples of generalized (α, β)-nonexpansive
mpas.

Remark 1.5. Let a selfmap Φ on a subset G of a Banach space. Then, the
following hold:

1. If Φ is Suzuki nonexpansive, then Φ is generalized (0, 0)-nonexpansive.

2. If Φ is generalized α-nonexpansive, then Φ is generalized (α, 0)- nonexpansive.

3. If Φ is β-Reich–Suzuki type nonexpansive, then Φ is generalized (0, β)- non-
expansive.

Iterative techniques for finding fixed points are an important and active re-
search area in nonlinear analysis with numerous applications in computers, applied
economics, physics and many other applied sciences [1]. Because the Picard itera-
tion xn+1 = Φxn does not always converge to a fixed point of a given nonexpansive
operator, we will present here some other well-known processes that not only con-
verge to a fixed point of a given nonexpansive operator but also have a higher rate
of convergence than the Picard iteration. Let we assume E be a nonempty convex
subset of a Banach space, αn, βn, γn ∈ (0, 1) and Φ: G → G be a given operator.

Over the last few years many iterative processes have been obtained in different
domains to approximate fixed points of various classes of mappings. Mann iteration
[25], Ishikawa iteration [13], Thakur et al. [32] and Ullah et al. [33] are the few
basic iteration processes.

Mann [25] described one of the earlier iteration processes as follows:{
x1 ∈ G,

xn+1 = (1− αn)xn + αnΦxn, n ≥ 1.
(1.7)
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The Mann iteration can be seen as a subset of the Ishikawa iteration process,
which was described by Ishikawa in [13] as follows:

x1 ∈ G,

yn = (1− βn)xn + βnΦxn,

xn+1 = (1− αn)xn + αnΦyn, n ≥ 1.

(1.8)

Agarwal et al. [2] is the slightly modified the Ishikawa iteration and defined as
follows: 

x1 ∈ G,

yn = (1− βn)xn + βnΦxn,

xn+1 = (1− αn)Φxn + αnΦyn, n ≥ 1.

(1.9)

We can infer from [2] that the Agarwal iterative process is superior to the
earlier processes, namely the Picard, Mann and Ishikawa iterative processes, by a
significant margin.

In 2016, Thakur et al. [32] proposed the iterative process listed below:
x1 ∈ G,

zn = (1− βn)xn + βnΦxn,

yn = Φ((1− αn)xn + αnzn),

xn+1 = Φyn, n ≥ 1.

(1.10)

Thakur et al. [32] demonstrated that the sequence {xn} defined by the iterative
process (1.10) converges (in certain circumstances) to a fixed point of a given
Suzuki’s map. Furthermore, they built a new example of Suzuki’s mappings Φ
and demonstrated that the iterative process (1.10) converges to a fixed point faster
than earlier iterative processes proposed by Mann [25], Ishikawa [13], Noor [26],
S-iteration [2] and Abbas [1].

In 2018, Ullah et al. [11] introduced a new iterative process, which they call it
”K” iteration process, as follows:

x1 ∈ G,

zn = (1− βn)xn + βnΦxn,

yn = Φ((1− αn)Φxn + αnΦzn),

xn+1 = Φyn, n ≥ 1.

(1.11)

Question: Is it possible to develop an iteration process whose rate of convergence
is even faster than the iteration processes defined above?
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As a very straight forward answer, in 2023, Dashputre et al. [10] proposed the
SRJ-iteration process, as follows:

Let G be a nonempty, closed and convex subset of a Banach space X and
Φ: G → G be a mapping. Let x1 ∈ G be arbitrary and the sequence {xn} generated
iteratively by 

x1 ∈ G,

zn = Φ((1− αn)xn + αnΦxn),

yn = Φ((1− βn)zn + βnΦzn),

xn+1 = Φ((1− γn)yn + γnΦyn), n ≥ 1

(1.12)

where {αn}, {βn} and {γn} are sequences in (0,1).

2. Preliminaries
Throughout this paper, we consider the following definition of a hyperbolic

space introduced by Kohlenbach [22].

Definition 2.1. A metric space (X, d) is said to be a hyperbolic space if there
exists a map W : X2 × [0, 1] → X satisfying
(i) d(ρ,W (x, y, α)) ≤ αd(ρ, x) + (1− α)d(ρ, y),
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),
(iii) W (x, y, α) = W (y, x, (1− α)),
(iv) d(W (x, z, α),W (y, w, α)) ≤ αd(x, y) + (1− α)d(z, w),
for all x, y, z, w ∈ X and α, β ∈ [0, 1].

Definition 2.2. [31] A metric space is said to be convex, if a triple (X, d,W )
satisfy only (i) in Definition 2.1.

Definition 2.3. [31] A subset G of a hyperbolic space X is said to be convex, if
W (x, y, α) ∈ G for all x, y ∈ G and α ∈ [0, 1].

If x, y ∈ X and λ ∈ [0, 1], then we use the notation (1−λ)x⊕λy for W (x, y, λ).
The following holds even for more general setting of convex metric space [31] : for
all x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y)

and
d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y).

Thus
1x⊕ 0y = x, 0x⊕ 1y = y

and
(1− λ)x⊕ λx = λx⊕ (1− λ)x = x.
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Definition 2.4. [23] A hyperbolic space (X, ∂,W ) is said to be uniformly convex,
if for any ρ, x, y ∈ X, r > 0 and ϵ ∈ (0, 2], there exists a δ ∈ (0, 1] such that

d

(
1

2
x⊕ 1

2
y, ρ

)
≤ (1− δ)r,

whenever d(x, ρ) ≤ r, d(y, ρ) ≤ r and d(x, y) ≥ ϵr.

Definition 2.5. A map η : (0,∞)×(0, 2] → (0, 1] which provides such a δ = η(r, ϵ)
for given r > 0 and ϵ ∈ (0, 2], is known as modulus of uniform convexity. We call
η monotone if it decreases with r (for a fixed ϵ).

In [23], Luestean proved that every CAT(0) space is a uniformly convex hyper-
bolic space with modulus of uniform convexity η(r, ϵ) = ϵ2

8
quadratic in ϵ.

Now we give the concept of ∆-convergence and some of its basic properties.
Let G be a nonempty subset of metric space (X, d) and {yn} be any bounded

sequence in X while diam(G) denotes the diameter of G. Consider a continuous
functional ra(., {yn}) : X → R+ defined by

ra(y, {yn}) = lim sup
n→+∞

d(yn, y), y ∈ X.

The infimum of ra(., {yn}) over G is said to be an asymptotic radius of {yn} with
respect to G and it is denoted by ra(G, {yn}). A point z ∈ G is said to be an
asymptotic center of the sequence {yn} with respect to G if

ra(z, {yn}) = inf{ra(y, {yn}) : y ∈ G}.

The set of all asymptotic center of {yn} with respect toG is denoted byAC(G, {yn}).
The set AC(G, {yn}) may be empty, singleton or have infinitely many points. If the
asymptotic radius and asymptotic center are taken with respect to whole space X,
then they are denoted by ra(X, {yn}) = ra({yn}) and AC(X, {yn}) = AC({yn}),
respectively. We know that for y ∈ X, ra(y, {yn}) = 0 if and only if limn→+∞ yn = y
and every bounded sequence has a unique asymptotic center with respect to closed
convex subset in uniformly convex Banach spaces.

Definition 2.6. The sequence {yn} in X is said to be ∆-convergent to y ∈ X , if
y is unique asymptotic center of the every subsequence {un} of {yn}. In this case,
we write ∆− limn→∞ yn = y and call y is the ∆-limit of {yn}.
Lemma 2.7. [24] Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Then every bounded sequence {xn}
in X has a unique asymptotic center with respect to any nonempty closed convex
subset G of X.
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Consider the following lemma of Khan et al. [17] which we use in the sequel.

Lemma 2.8. Let (X, d,W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Let x ∈ X and {tn} be a sequence in
[a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that

lim sup
n→+∞

d(xn, x) ≤ c,

lim sup
n→+∞

d(yn, x) ≤ c

and

lim sup
n→+∞

d(W (xn, yn, tn), x) = c

for some c ≥ 0, then limn→+∞ d(xn, yn) = 0.

Definition 2.9. Let G be a nonempty convex closed subset of a hyperbolic space
X and {xn} be a sequence in X . Then {xn} is said to be Fejér monotone with
respect to M if for all x ∈ G and n ∈ N,

d(xn+1, x) ≤ d(xn, x).

Assume thatG is a nonempty subset of a hyperbolic space (X, d) and Φ: G → G
is a mapping and F (Φ) = t ∈ G : Φt = t is the set of all fixed points of the map
Φ. The mapping Φ: G → G is called nonexpansive, if ||Φt−Φρ|| ≤ ||t− ρ|| for all
t, ρ ∈ G and is called quasi-nonexpansive, if F (Φ) ̸= ∅ and ||Φt− q|| ≤ ||t− q|| for
all t ∈ G and q ∈ F (Φ).

We can easily prove the following Proposition.

Proposition 2.10. Let {xn} be a sequence in X and G be a nonempty subset of
X. Let Φ: G → G be a nonexpansive mapping with F (Φ) ̸= ∅. Suppose that {xn}
is Fejér monotone with respect to G. Then we have the followings:
(1) {xn} is bounded.
(2) The sequence {d(xn, p)} is decreasing and converges for all p ∈ F (Φ).
(3) limn→+∞ D(xn, F (Φ)) exists, where D(x,A) = infy∈A d(x, y).

Lemma 2.11. [33] Assume that G is a nonempty subset of a hyperbolic space X
and Φ: G → G is generalized (α, β)-nonexpansive. Then for x, y ∈ G,

1. ||Φx− Φ2x|| ≤ ||x− Φx||.

2. Either 1
2
||x− Φx|| ≤ ||x− y|| or 1

2
||Φx− Φ2x|| ≤ ||Φx− y||.
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3. Either
||Φx−Φy|| ≤ α||x−Φy||+α||y,−Φx||+β||x−Φx||+β||y−Φy||+(1−2α−
2β)||x− y||
or
||Φ2x − Φy|| ≤ α||Φx − Φy|| + α||y − Φ2x|| + β||Φx − Φ2x|| + β||y − Φy|| +
(1− 2α− 2β)||Φx− y||.

Lemma 2.12. [33] Assume that G is a nonempty subset of a hyperbolic space X
and Φ: G → G is generalized (α, β)-nonexpansive. Then for x, ρ ∈ G with x ≤ ρ,

||x− Φx|| ≤
(
3 + α + β

1− α− β

)
||x− Φx||+ ||x− ρ||.

Definition 2.13. Assume that G is a nonempty subset of a hyperbolic space X
and Φ: G → G is a generalized (α, β)-nonexpansive mapping with F (Φ) ̸= ∅. Then
Φ is quasi-nonexpansive.

Lemma 2.14. [29] Let X be complete uniformly convex hyperbolic space with
monotone modulus of convexity η, G be a nonempty closed convex subset of X and
Φ: G → G be a generalized (α, β)-nonexpansive mapping. If {xn} is a bounded
sequence in G such that limn→+∞ d(xn,Φxn) = 0, then Φ has a fixed point in G.

Lemma 2.15. [29] Let G be a nonempty, bounded, closed and convex subset of
a complete uniformly convex hyperbolic space with monotone modulus of uniform
convexity η and Φ be a generalized (α, β)-nonexpansive mapping on G. Suppose
that {xn} is a sequence in G, with d(xn,Φxn) → 0. If AC(G, {xn}) = ρ, then ρ is
a fixed point of Φ. Moreover, F (Φ) is closed and convex.

3. Main Result
Now, we establish the convergence results for SRJ-iteration process for gener-

alized (α, β)-nonexpansive mappings in hyperbolic spaces, as follows: Let G be a
nonempty, closed and convex subset of a hyperbolic space X and Φ be a generalized
(α, β)-nonexpansive mapping on G. For any x1 ∈ G the sequence {xn} is defined
by 

zn = W (Φσn, 0, 0),

σn = W (xn,Φxn, αn),

yn = W (Φνn, 0, 0),

νn = W (zn,Φzn, βn),

xn+1 = W (Φϱn, 0, 0),

ϱn = W (yn,Φyn, γn), ∀n ∈ N

(3.1)
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where {αn}, {βn} and {γn} are sequences in (0,1). This section establishes some
significant strong and ∆-convergence results for operators with generalized (α, β)-
nonexpansive mapping. Our results will generalize the results of Ullah et al. [33]
and Dashputre et al [10].

Theorem 3.1. Let Gbe a nonempty, closed and convex subset of a hyperbolic
space X and Φ: G → G be a generalized (α, β)-nonexpansive mapping. If {xn} is
a sequence defined by (3.1), then {xn} is Fejér monotone with respect to F (Φ).
Proof. Since Φ is a generalized (α, β)-nonexpansive, for ρ ∈ F (Φ), we have

1

2
d(ρ,Φρ) = 0 ≤ d(ρ, xn),

1

2
d(ρ,Φρ) = 0 ≤ d(ρ, yn)

and
1

2
d(ρ,Φρ) = 0 ≤ d(ρ, zn),

for all n ∈ N. Now, also we have

d(Φρ,Φxn) ≤ αd(ρ,Φxn) + αd(xn,Φρ) + βd(ρ,Φρ) + βd(xn,Φxn)

+ (1− 2α− 2β)d(ρ, xn),

d(Φρ,Φyn) ≤ αd(ρ,Φyn) + αd(yn,Φρ) + βd(ρ,Φρ) + βd(yn,Φyn)

+ (1− 2α− 2β)d(ρ, yn)

and

d(Φρ,Φzn) ≤ αd(ρ,Φzn) + αd(zn,Φρ) + βd(ρ,Φρ) + βd(zn,Φzn)

+ (1− 2α− 2β)d(ρ, zn).

Now, using (3.1) and Definition 2.13,

d(Φρ,Φxn) ≤ d(ρ, xn),

d(Φρ,Φyn) ≤ d(ρ, yn)

and

d(Φρ,Φzn) ≤ d(ρ, zn). (3.2)
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Using Definition 2.13 and (3.1), we get

d(zn, p) = d(W (Φσn, 0, 0)), ρ)

= d(Φσn, ρ)

≤ d(σn, ρ)

= d(W (xn,Φxn, αn), ρ)

≤ ((1− αn))d(xn, ρ) + αnd(Φxn, ρ)

≤ (1− αn)d(xn, ρ) + αnd(xn, ρ)

≤ d(xn, ρ).

(3.3)

Using Definition 2.13, (3.1) and (3.3), we get

d(yn, p) = d(W (Φνn, 0, 0)), ρ)

= d(Φνn, ρ)

≤ d(νn, ρ)

= d(W (zn,Φzn, βn), ρ)

≤ (1− βn)d(zn, ρ) + βnd(Φzn, ρ)

≤ (1− βn)d(zn, ρ) + βnd(zn, ρ)

≤ (1− βn)d(xn, ρ) + βnd(xn, ρ)

≤ d(xn, ρ).

(3.4)

Using Definition 2.13, (3.1), (3.3) and (3.4), we get

d(xn+1, p) = d(W (Φϱn, 0, 0)), ρ)

= d(Φϱn, ρ)

≤ d(ϱn, ρ)

= d(W (yn,Φyn, γn), ρ)

≤ (1− γn)d(yn, ρ) + γnd(Φyn, ρ)

≤ (1− γn)d(yn, ρ) + γnd(yn, ρ)

≤ (1− γn)d(xn, ρ) + γnd(xn, ρ)

≤ d(xn, ρ).

(3.5)

Hence, {xn} is Fejér monotone with respect to F (Φ).

Theorem 3.2. Let G be a nonempty, closed and convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
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η and Φ be a generalized (α, β)-nonexpansive mapping on G. If {xn} is a sequence
defined by (3.1), then F (Φ) is nonempty if and only if the sequence {xn} is bounded
and limn→+∞ d(xn,Φxn) = 0.
Proof. Assume that F (Φ) is nonempty and let ρ ∈ F (Φ). From Theorem 3.1
and Proposition 2.10, we have {xn} is Fejér monotone with respect to F (Φ) and
bounded such that limn→+∞ D((xn, F (Φ)) exists, let limn→+∞ d(xn, ρ) = l.
Case I. Let l = 0. Then

d(xn,Φxn) ≤ d(xn, ρ) + d(ρ,Φxn),

from Definition 2.13,

d(xn,Φxn) ≤ 2d(xn, ρ).

On taking limit as n → +∞ both sides of the inequality,

lim
n→+∞

d(xn,Φxn) = 0.

Case II. Let l > 0. Then, since G is a generalized (α, β)-nonexpansive mapping,
by Definition 2.13, for ρ ∈ F (Φ),

d(Φxn, ρ) ≤ d(xn, ρ).

On taking lim sup as n → +∞ both sides of the inequality,

lim sup
n→+∞

d(Φxn, ρ) ≤ l.

On taking lim sup as n → +∞ both sides of the (3.4),

lim sup
n→+∞

d(zn, ρ) ≤ l. (3.6)

From (3.5),

d(xn+1, p) = d(W (Φϱn, 0, 0)), ρ)

= d(Φϱn, ρ)

≤ d(ϱn, ρ)

= d(W (yn,Φyn, γn), ρ)

≤ (1− γn)d(yn, ρ) + γnd(Φyn, ρ)

≤ (1− γn)d(xn, ρ) + γnd(yn, ρ).
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It follows that

d(xn+1, ρ)− d(xn, ρ) ≤ γn(d(yn, ρ)− d(xn, ρ))

d(xn+1, ρ)− d(xn, ρ) ≤
d(xn+1, ρ)− d(xn, ρ)

γn
≤ d(yn, ρ)− d(xn, ρ)

d(xn+1, ρ) ≤ d(yn, ρ).

On taking lim sup as n → +∞ both sides of the inequality,

l ≤ lim inf
n→+∞

d(yn, ρ). (3.7)

From (3.6) and (3.7),

lim
n→+∞

d(yn, ρ) = l.

On taking lim sup as n → +∞ in (3.3),

lim sup
n→+∞

d(zn, ρ) ≤ l. (3.8)

From (3.5),

d(xn+1, p) = d(W (Φϱn, 0, 0)), ρ)

= d(Φϱn, ρ)

≤ d(ϱn, ρ)

= d(W (yn,Φyn, γn), ρ)

≤ (1− γn)d(yn, ρ) + γnd(Φyn, ρ)

≤ (1− γn)d(zn, ρ) + γnd(yn, ρ)

≤ (1− γn)d(zn, ρ) + γnd(zn, ρ)

≤ d(zn, ρ).

On taking lim inf as n → +∞ both sides of the inequality,

l ≤ lim inf
n→+∞

d(zn, ρ). (3.9)

From (3.8) and (3.9),

lim
n→+∞

d(zn, ρ) = l.
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Therefore, by (3.3)

l = lim sup
n→+∞

d(zn, ρ)

≤ lim sup
n→+∞

d(W (xn,Φxn, αn), ρ)

≤ lim sup
n→+∞

[(1− αn)d(xn, ρ) + αnd(Φxn, ρ)]

≤ lim sup
n→+∞

[(1− αn)d(xn, ρ) + αnd(xn, ρ)]

≤ lim sup
n→+∞

d(xn, ρ) = l.

By Lemma 2.8, limn→+∞ d(xn,Φxn) = 0.

Conversely, assume that {xn} is bounded and limn→+∞ d(xn,Φxn) = 0. Then,
from Lemma 2.14, we have Φρ = ρ, that is, F (Φ) is nonempty.

Theorem 3.3. Let G be a nonempty, closed and convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
η. Let Φ: G → G be a generalized (α, β)-nonexpansive mapping with F (Φ) ̸= ∅.
Then the sequence {xn} defined in (3.1), is ∆-convergent to a fixed point of Φ.
Proof. From Theorem 3.1, we observe that {xn} is a bounded sequence, therefore
{xn} has a ∆-convergent subsequence. Now we will prove that every ∆-convergent
subsequence of {xn} has a unique ∆ − limit in F (Φ). For this, let y and z be
∆− limit of the subsequences {yn} and {zn} of {xn} respectively.

Now by Lemma 2.7, AC(G, {yn}) = {yn} and AC(G, {zn}) = {zn}. By Theo-
rem 3.2, we have limn→+∞ d(yn,Φyn) = 0.

Now we will prove that y and z are fixed points of Φ and they are same. If not,
then by the uniqueness of the asymptotic center

lim sup
n→+∞

d(xn, y) = lim sup
n→+∞

d(yn, y)

< lim sup
n→+∞

d(yn, z)

= lim sup
n→+∞

d(xn, z)

= lim sup
n→+∞

d(zn, z)

< lim sup
n→+∞

d(zn, y)

= lim sup
n→+∞

d(xn, y)
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which is a contradiction. Hence y = z and sequence {xn} is ∆-convergent to a
unique fixed point of Φ.

Theorem 3.4. Let G be a nonempty, closed and convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
η and Φ: G → G be a generalized (α, β)-nonexpansive mapping with F (Φ) ̸= ∅.
Then the sequence {xn} which is defined by (3.1), converges strongly to some fixed
point of Φ if and only if lim infn→+∞ D(xn, F (Φ)) = 0, where D(xn, F (Φ)) =
infy∈F (Φ) d(xn, y).
Proof. Assume that {xn} converges strongly to y ∈ F (Φ). Therefore we have
limn→+∞ d(xn, y) = 0. Since 0 ≤ D(xn, F (Φ)) ≤ d(xn, y), we have

lim inf
n→+∞

D(xn, F (Φ)) = 0.

Next, we prove sufficient part. From Lemma 2.15, the fixed point set F (Φ) is
closed. Suppose that

lim inf
n→+∞

D(xn, F (Φ)) = 0.

Then, from (3.5), we have

D(xn+1, F (Φ)) ≤ D(xn, F (Φ)).

From Theorem 3.1 and Proposition 2.10, we have limn→+∞ d(xn, F (Φ)) exists.
Hence

lim
n→+∞

D(xn, F (Φ)) = 0.

Consider the subsequence {xnk
}of {xn} such that d(xnk

, pk) < 1
2k

for all k ≥ 1,
where {pk} is in F (Φ). From (3.4), we have

d(xnk+1
, pk) ≤ d(xnk

, pk) <
1

2k
,

which implies that

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xnk+1

, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

This shows that {pk} is a Cauchy sequence. Since F (Φ)is closed, {pk} is a con-
vergent sequence. Let limk→∞ pk = p. Then we know that {xn} converges to y.
Since

d(xnk
, y) ≤ d(xnk

, pk) + d(pk, y),
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we have

lim
k→∞

d(xnk
, y) = 0.

Since limn→+∞ d(xn, y) exists, the sequence {xn} converges to y.

Recall that a mapping Φ from a subset of a hyperbolic space X into itself with
F (Φ) ̸= ∅ is said to satisfy condition (I) if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for t ∈ (0,∞) such that

d(x,Φx) ≥ f(D(x, F (Φ))),

for all x ∈ G.

Theorem 3.5. Let G be a nonempty, closed and convex subset of a complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
η and Φ: G → G be a generalized (α, β)-nonexpansive mapping. Moreover, Φ
satisfies the condition (I) with F (Φ) ̸= ∅. Then the sequence {xn} which is defined
by (3.1), converges strongly to some fixed point of Φ.
Proof. From Lemma 2.15, we have F (Φ) is closed. Observe that by Theorem 3.2,
we have limn→+∞ d(xn,Φxn) = 0. It follows from the condition (I) that

lim
n→+∞

f(D(xn, F (Φ))) ≤ lim
n→+∞

d(xn,Φxn).

Thus, we get limn→+∞ f(D(xn, F (Φ))) = 0. Since f : [0, 1) → [0, 1) is a non-
decreasing mapping with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞), we have
limn→+∞ D(xn, F (Φ)) = 0. Rest of the proof follows in lines of Theorem 3.4. Hence
the sequence {xn} is convergent to p ∈ F (Φ). This completes the proof.

4. Numerical Example

The following example shows that there exist maps which are generalized (α, β)-
nonexpansive but neither generalized α-nonexpansive nor β-Reich–Suzuki type.

Example 4.1. [33] Let K = R+ with usual norm ||.||. Then map Φ: K → G is
defined as

Φx =

{
0, if x ∈ [0, 1

2
],

x
2
, if x ∈ (1

2
,∞),

for all x ∈ K. Then, it is easy to see that Φ is neither generalized 1
4
-nonexpansive

nor 1
4
-Reich-Suzuki type. Hence, Φ satisfies the generalized (1

4
, 1
4
)-nonexpansive.

We obtained the influence of initial point for the SRJ iteration algorithm (1.12) by
αn = 0.90, βn = 0.65, γn = 0.85 and x1 = 1000.
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Table 1: Convergence of SRJ iteration for fixed point 0.

No. of
iteration

Ishikawa
iteration

Agrawal
iteration

Thakur
iteration

K iteration SRJ iteration

0 1000 1000 1000 1000 1000
1 403.7500000 353.7500000 176.8750000 100.9375000 26.68359375
2 163.0140625 125.1390625 31.28476563 10.18837891 0.712014175
3 65.81692773 44.26794336 5.533492920 1.028389496 0
4 26.57358457 15.65978496 0.978736560 0 0
5 10.72908477 5.539648931 0 0 0
6 4.331867976 1.959650809 0 0 0
7 1.748991695 0.693226474 0 0 0
8 0.706155397 0.034661324 0 0 0
9 0.007061842 0 0 0 0
10 0.007061554 0 0 0 0

Figure 1: Convergence of Ishikawa, Agrawal, Thakur, K and SRJ iterations

5. Conclusion
In this work, we present some fixed point results for generalized (α, β)- nonex-

pansive mappings and also use an SRJ iterative algorithm for approximating the
fixed point of this class of mappings in the framework of hyperbolic spaces. We
have also performed some numerical computations to validate the claims and re-
sults of the paper. Our numerical experiment shows that our iterative algorithm
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is better than some existing iterative algorithms in the literature.
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